

1st Faculty of Medicine, Charles University in Prague Center for Advanced Preclinical Imaging (CAPI)

Preclinical Imaging in Small Laboratory Animals

Instrumentation and Application

Infections & Inflammation

Molecular Imaging in Pharmaceutical Research

Sebastian Eigner, M.Sc.

1st Faculty of Medicine, Charles University in Prague Center for Advanced Preclinical Imaging (CAPI)

EVROPSKÁ UNIE EVROPSKÝ FOND PRO REGIONÁLNÍ ROZVOJ INVESTICE DO VAŠÍ BUDOUCNOSTI OP Výzkum a vývoj pro inovace

¹⁸F-FDG – human heart ^A

¹⁸F-FDG –rat heart ^B

Bladder

Tumor

g/mi

Drug Development Process

William JK et al., Nature Reviews 2008:7; 591-607

1st Faculty of Medicine, Charles University in Prague Center for Advanced Preclinical Imaging (CAPI)

UJF, AV ČR, v.v.i.

Imaging Modalities

Dedicated for Small Laboratory Animals

1st Faculty of Medicine, Charles University in Prague Center for Advanced Preclinical Imaging (CAPI)

UJF, AV ČR, v.v.i.

Anatomic Physiologic Metabolic Molecular optical imaging

x-ray CT

MRI/MPI

ultrasound

Spatial Resolution

Comparison of Clinical and Preclinical Imaging Modalities

Modality	Spatial resolution (mm)		Clinical-to-preclinical design refinement(s)
	Clinical	Preclinical	
MRI	~1	≤ 0.1	Higher field-strength magnets, improved gradient fields and coils
MRSI	~10	~2	Higher field-strength magnets, improved gradient fields and coils
PET	~5	1-2	Reduced detector element size, smaller- diameter detector rings
SPECT	~10	0.5-2	Pinhole collimation (and resulting magnification)
СТ	1-2	≤0.2	Higher X-ray flux, smaller focal spot, and higher magnification
US	1-2	≤ 0.1	Higher-frequency scan heads

Fabian Kiessling and Bernd J. Pichler. "Small Animal imaging" Basics and Practical Guide. ISBN: 978-3-642-12944-5

Small Animal Imaging

Requirements

High spatial resolution

- mouse organs ~1000-fold smaller volume than human

High sensitivity

- number of targets also smaller, radiation dosimetry can be limiting

Molecular Imaging

The Big Picture

Molecular Imaging

Pharmaceutical R&D

Molecular Imaging

Pharmaceutical R&D

- In vivo biological characterization
- Pharmacokinetics measurements
- Imaging biomarkers in clinical trials
- Prediction of treatment response
- Improve drug development successes
- Discovery of novel diagnostic imaging agents
- Improved diagnostics
- Improved patient outcomes
- Individualized treatment plans
- Identification of appropriate therapies
- Enhancement of resource utilization \rightarrow saving money

Pharmaceutical R&D

Ideal Tracer for Protein Synthesis?

- Pathway independent transport
- Uptake regulated by ribosomal activity (Metabolic Trapping)
- Ribosome entry independent from RNA-sequence and co-factors

Biotin-Puromycin-Oligonucleotide

- Pathway independent transport
 - AMP transporter (permanently active in living cells)
- Uptake regulated by ribosomal activity
 - Bidirectional transport \rightarrow steady state without incorporation
- Ribosome entry independent from RNA-sequence
 - No co-factors needed for coordination in ribosome A-site

OPTICAL IMAGING SYSTEMS IN-VIVO MS FX PRO

- front-illuminated 4 MP CCD
- ¹⁸F, ⁹⁰Y, ^{99m}Tc
- QC settings: iTLC analysis
- Cell culture simulation on 12-wellplates
- In vivo imaging of ⁹⁰Y mAb in mouse

OPTICAL IMAGING SYSTEMS IN-VIVO EXTREME

- back-illuminated 4 MP CCD
- ¹⁸F, ⁹⁰Y, ^{99m}Tc
- QC settings: iTLC analysis
- Cell culture simulation on 12-wellplates
- In vivo imaging of ⁹⁰Y mAb in mouse

SPATIAL RESOLUTION RADIOISOTOPIC PHOSPHOR SCREEN

Radio-Isotopic Phosphor Screen 15 sec exposure

- Derenzo Phantom
- 20 MBq 90Y
- Exposure: 15 sec

Cerenkov Imaging 5 sec exposure

QUALITY CONTROL

⁶⁸GA-LABELING OF DOTA-PUR

1st Faculty of Medicine, Charles University in Prague Center for Advanced Preclinical Imaging (CAPI)

s.eigner@seznam.cz

⁶⁸GA-LABELING OF DOTA-PUR

- RM was purified on Strata X-columns following the protocol for purification of ⁶⁸Ga-DOTATOC (over all yield ≥ 93±2.8%)
- for injection EtOH was removed at 95°C in stream of air and the dried product resolved in 0,5M PBS (pH = 6,8)

Specific activity of [68Ga]-DOTA-Pur : 1.5±0.1 GBq/µmol

Uptake in tumor cells (DU145) after 2 hours

 $2.0 \pm 0.1\%$ applied dose per 1×10^{6} cells

Uptake in normal skin fibroblasts (BJ)

 $0.2 \pm 0.1\%$ applied dose per 1×10^{6} cells

Tumor / Normal cells = 10:1

Protein incorporation in both cell lines was ≥ 93% of Uptake

1st Faculty of Medicine, Charles University in Prague Center for Advanced Preclinical Imaging (CAPI)

Cycloheximide: 3-[2-(3,5-dimethyl-2-oxocyclohexyl)-2-hydroxyethyl] glutarimide

s.eigner@seznam.cz

20 nmol/well + 84 pmol/well of [⁶⁸Ga]-DOTA-Pur Non-competitive Inhibition: 100 response [%] 80 60-Cycloheximide 10pmol/well and 20 nmol/well + 40-20

Inhibition of [68Ga]-DOTA-Pur

incorporation into proteins

Competitive Inhibition:

(Competition for ribosomal A-site)

Puromycin dihydrochloride 10pmol/well and 20

(blocking translational elomgation)

84 pmol/well of [68Ga]-DOTA-Pur

0-

UJF, AV ČR, v.v.i.

SENSITIVITY LOW ACTIVITY – CELL CULTURE

5.5 kBq to 88 kBq; exposure 120 sec; correlation between in-vivo MS FX Pro & dose calibrator (IC)

INTERMEDIATE AKTIVITY - EX VIVO DIAGNOSTICS

5.5 kBq to 528 kBq; exposure 10 sec; correlation between in-vivo MS FX Pro & dose calibrator (IC)

HIGH AKTIVITY - IN VIVO DIAGNOSTICS

440 kBq to 33 MBq; exposure 5 sec; correlation between in-vivo MS FX Pro & dose calibrator (IC)

IN-VIVO SCREENING ⁹⁰Y-DOTA-hR3; 25MBq; 24h p.i.

Suppine position; 5 min exposure; 1% isoflurane

prone position; 5 min exposure; 1% isoflurane

Pharmaceutical R&D

1st Faculty of Medicine, Charles University in Prague Center for Advanced Preclinical Imaging (CAPI)

UJF, AV ČR, v.v.i.

Positron Emission Tomography

in vivo PET imaging

- Tomographic imaging modality
- Functional information
- Non-invasive
- High sensitivity pmol
- Short lived radioisotopes
- Large variety of labeled compounds
 - Energy metabolism (FDG)
 - Amino acid metabolism (¹⁸F and ¹¹C labeled AA)
 - Protein biosynthesis (DOTA conjugated puromycin analogues)
 - Neurotransmitter
 - Receptor imaging (neuro, onco,...)
 - Hemodynamic parameters
 - Gene expression
 - Cell tracking (stem cells)
- 0.8 1.2 mm spacial resolution
- 6-10 % sensitivity
- temporal resolution < 0.5 sec
- QUANTIFIABLE

Positron Emission Tomography

Temporal resolution

Consecutive 0.3-s frames show passage of tracer bolus through RV cavity, lungs, and LV chamber of mouse on coronal and transverse slices. Times are those after start of image acquisition / injection. For better anatomic orientation, PET scan is overlaid with coregistered CT scan.

1st Faculty of Medicine, Charles University in Prague Center for Advanced Preclinical Imaging (CAPI)

UJF, AV ČR, v.v.i.

Michael C. Kreissl et al. J Nucl Med 2006;47:974-980

Dynamic PET Scan

Steps of Analysis

Dynamic PET Scan

Time Activity (concentration) Curves (TACs)

TAC of tracer concentration in arterial blood

TAC of concentration in tissue measured by PET scanner

- Focus 120 small animal PET (Siemens/Concorde)
- Anaesthetized (3% Isoflurane in oxygen) animals (230-270 g body weight) were placed tail first supine in the field of view
- 20–25 MBq of [⁶⁸Ga]-DOTA-puromycin in 0.4-0.7 mL 0.9% NaCI-solution via tail vein
- TAC: varying time frames (1-5 min), measuring interval 45 minutes, PET list-mode, histogrammed in 12 frames for reconstruction

µPET-imaging in tumor bearing rats

 Bladder

 Tumor

Summarized µPET-image, coronal slice, colors expressed as SUV (0-9) (3-20 min, dynamic scan) of AT1 tumors on hind feet of Copenhagen Summarized µPET-image, coronal slice, colors expressed as SUV (0-12) (3-20 min, dynamic scan) of Walker carcinomas on hind feet of CD rats and

µPET-imaging in tumor bearing rats

0-120 min TAC's of tumor and testis (reference) of AT1 tumor on hind feet of Copenhagen rats; steady state reached after approximately 65 minutes

Walker Carcinoma: Obtained TAC looks like cell uptake and slow wash out caused by retention of the [⁶⁸Ga]-DOTA-Pur as aa-tRNA-analogon within eukaryotic ribosomal A-site.

Parametric Image

- Dynamic information is converted to functional information with dedicated software
 - Not a series of scans (smaller file size)
 - image voxel value = the value of the studied physiological parameter (perfusion, glucose consumption, receptor density)
- More sophisticated analyses possible
 - requires careful evaluation of alternative models before choosing the right model

PET quantification

 Radioactivity concentration (tissue or plasma) can be easily converted to drug concentration:

drug concentration =

 $\frac{radioactivity\ concentration\ [kBq/cm^{3}]}{specific\ radioactivity\ [GBq/\mu mol]}$

 Drug concentration is used to measure tissue function in vivo: e.g. perfusion, glucose consumption, receptor density, enzyme activity, etc.

µPET/MRI & SPECT/CT

• ⁶⁸Ga-DOTA-Pur

20 minutes static PET images of BCG infected (3 months prior to study) mice were acquired from 30 to 50 minutes after i.v. bolus injection of 5 to 8 MBq ⁶⁸Ga-DOTA-Pur followed by a spoiled GRE 3D MRI sequence

• ¹⁸FDG

20 minutes static PET images from 40 to 60 minutes after i.v. bolus injection of 5 to 8 MBq ¹⁸FDG followed by a spoiled GRE 3D MRI sequence

• ⁶⁷Ga-Citrate

24 h post injection multiple pinhole SPECT followed by a high resolution CT

¹⁸FDG µPET/MRI of BCG infected mouse; A) BCG infection in armpit; B) prefunded heart

⁶⁷Ga Citrate SPECT/CT

⁶⁷Ga-citrate SPECT/CT of healthy and BCG infected mouse; A) healthy; B) BCG infected

1st Faculty of Medicine, Charles University in Prague Center for Advanced Preclinical Imaging (CAPI)

s.eigner@seznam.cz

68Ga DOTA-Pur PET/MRI

 $^{68}\mbox{Ga-DOTA-Pur}\ \mu\mbox{PET/MRI}$ of BCG infected mouse; A) BCG infection in armpit; B) prefunded heart; C) BCG foci in liver

Histology

- Stainings: Ziehl-Neelsen for BCG; H&E for inflammation
- Granulomae were found near vessel walls in the armpit & inflammation at vessel walls in BCG infected area and lymph nodes correlating with ¹⁸FDG uptake
- systemic mycobacteriosis was seen without inflammation in spleen and liver (single granulomae in liver) correlating with ⁶⁸Ga-DOTA-Pur uptake
- Spearman's correlation test p<0.089 for ⁶⁸Ga-DOTA-Pur and ZN level p>0.2 for ¹⁸FDG and ZN level

Summary

- Molecular imaging modalities can be utilized during all steps of radiopharmaceutical development
- Implementation of "alternative" visualization techniques can save time and material
- Advanced analysis of dynamic PET scans enables absolute quantification of biochemical processes in various tissues
- Compared to *ex vivo* analysis advanced dynamic PET imaging saves up to 80% of animals and reduces lab-time to less than 15%

→ Implementation of molecular imaging in (radio)pharmaceutical R&D ultimately saves time and money and delivers translational data for planning and conducting of clinical trials

ACKNOWLEDGEMENTS

Bruker Molecular Imaging Dr. Jens Waldeck

CROmed Research and Services Ltd., Budapest Dr. Domokos Mathé

Notre Dame Integrated Imaging Facility Prof. Dr. W. Matthew Leevy Sarah Chapman

NPI AS CR, Department of Radiopharmaceuticals Dr. Ondrej Lebeda Dr. Katerina Eigner Henke

Academy of Sciences of the Czech Republic Grant № M100481201

THANK YOU FOR YOUR ATTENTION

1st Faculty of Medicine, Charles University in Prague Center for Advanced Preclinical Imaging (CAPI)

UJF, AV ČR, v.v.i.

